Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species.

نویسندگان

  • Nina Overgaard Therkildsen
  • Stephen R Palumbi
چکیده

Today most population genomic studies of nonmodel organisms either sequence a subset of the genome deeply in each individual or sequence pools of unlabelled individuals. With a step-by-step workflow, we illustrate how low-coverage whole-genome sequencing of hundreds of individually barcoded samples is now a practical alternative strategy for obtaining genomewide data on a population scale. We used a highly efficient protocol to generate high-quality libraries for ~6.5 USD from each of 876 Atlantic silversides (a teleost fish with a genome size ~730 Mb) that we sequenced to 1-4× genome coverage. In the absence of a reference genome, we developed a bioinformatic pipeline for mapping the genomic reads to a de novo assembled reference transcriptome. This provides an 'in silico' method for exome capture that avoids the complexities and expenses of using wet chemistry for target isolation. Using novel tools for analysis of low-coverage data, we extracted population allele frequencies, individual genotype likelihoods and polymorphism data for 2 504 335 SNPs across the exome for the 876 fish. To illustrate the use of the resulting data, we present a preliminary analysis of geographical patterns in the exome data and a comparison of complete mitochondrial genome sequences for each individual (constructed from the low-coverage data) that show population colonization patterns along the US east coast. With a total cost per sample of less than 50 USD (including sequencing) and ability to prepare 96 libraries in only 5 h, our approach adds a viable new option to the population genomics toolbox.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics.

Next-generation sequencing has opened the door to genomic analysis of nonmodel organisms. Technologies generating long-sequence reads (200-400 bp) are increasingly used in evolutionary studies of nonmodel organisms, but the short-sequence reads (30-50 bp) that can be produced at lower cost are thought to be of limited utility for de novo sequencing applications. Here, we tested this assumption ...

متن کامل

Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species.

High-throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double-digest restriction-associated DNA sequencing (ddRADseq) to recover thousands of single nu...

متن کامل

Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics.

Next-generation sequencing (NGS) is emerging as an efficient and cost-effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi-genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing ...

متن کامل

Sequencing breakthroughs for genomic ecology and evolutionary biology.

Techniques involving whole-genome sequencing and whole-population sequencing (metagenomics) are beginning to revolutionize the study of ecology and evolution. This revolution is furthest advanced in the Bacteria and Archaea, and more sequence data are required for genomic ecology to be fully applied to the majority of eukaryotes. Recently developed next-generation sequencing technologies provid...

متن کامل

A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes

We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology resources

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2017